

Why does nutrient pollution resulting in algal blooms matter? Taste and odor problems Blooms of toxic algae (e.g., ?) Aesthetics and money Oxygen problems (bacteria?) Fish kills

One off-shoot

- In 1994, US greatly limited P in <u>laundry</u> detergents through a voluntary ban by the industry after many states had outlawed P use
- Dishwasher detergents have recently (2010) been targeted, but many complain of poor cleaning action

 As of 15

Solutions

- Reduce nutrients
 - Shrink fertilizer usage
 - Divert and treat sewage
 - Remove them
 - Dredging
 - Harvesting biomass
 - Use nutrient cycling (for some elements)
 - Maintain and restore riparian zones and wetlands
 - Do not bypass
 - Creatively use geomorphology

Two case studies of eutrophication

- Lake Washington
- Lake Trummen

Lake Washington/Stinko

- Noticed shift to eutrophic algal species
- Sewage diverted from Lake Washington in 1960's
- Cyanobacteria dropped out--eventually
- Were able to control trophic state <u>before</u> hypolimnion went anoxic
 - Why such a concern from a limiting nutrient /redox perspective?

W.T. Edmondsoi (1916-2000)

Effect of nutrient control in Lake Washington

Nutrient removal and wetlands Wetlands can serve as nutrient sinks or filters How are N & P "removed" from water entering wetland? Any differences? Possible solutions? Will all wetlands work as nutrient filters? Why or why not? What about Carolina bays?

